
COPYLEFT LICENCING
AND SOFTWARE DEVELOPMENT

Massimo D’Antoni Maria Alessandra Rossi
Department of Economics, University of Siena

Preliminary version

May 2, 2007

Abstract

This article aims at clarifying the role played by licenses within the in-
creasingly relevant Open Source Software (OSS) phenomenon. In par-
ticular, the article explores from a theoretical point of view the com-
parative properties of the two main categories of OSS licenses|copyleft
and non-copyleft licenses|in terms of their ability to stimulate inno-
vation and coordination of development e¸orts. In order to do so, the
paper relies on an incomplete contracting model. The model shows
that, in spite of the fact that copyleft licenses entail the enjoyment of
a narrower set of rights by both licensors and licensees, they may be
preferred to non-copyleft licenses when coordination of complementary
(co-speci˛c) investments in development is important. It thus provides
a non-ideologically-based explanation for the puzzling evidence showing
the dominance, in terms of di¸usion, of copyleft licenses.

Keywords: intellectual property rights, open source, copyright, copy-
left, GPL licence, incentives to innovation.

JEL classification: O34.



1. Introduction

Open Source Software (OSS) has reached a signi˛cant extent of market pen-
etration in recent years. A June 2006 report by research ˛rm Gartner sug-
gested that OSS would take away 22% of the traditional software market
over the next ˛ve years. In July 2006 IDC estimated that OSS held 7% of
IT software revenue and projected an increase to 15% of IT software budgets
in the next four years. Considering that a signi˛cant part of OSS products
is distributed for free, the latter projection may well underestimate the ex-
tent of OSS di¸usion. Moreover, OSS is the market leader in the web server
segment, where Apache holds more than 58% of the market according to the
latest Netcraft survey (April 2007) and holds relevant market shares in the
mail server market (47,8%, according to the FalkoTimme mail server sur-
vey) and in the database market (33% of European ˛rms use OSS databases,
according to IDC).

Economic scholarship has kept up with the pace of OSS market di¸usion,
exploring a wide range of OSS-related issues and reconciling many apparently
puzzling characteristics with conventional economic analysis (Rossi, 2006, for
a survey, see). Yet, a few relevant issues|and particularly the role played by
licenses as a coordination mechanism|remain under-researched. Indeed, the
search for economics-based explanations for the OSS phenomenon has led to
the identi˛cation of features, such as the interplay between intrinsic and ex-
trinsic motivations to contribute, that may make appear licenses redundant.
Maurer and Scotchmer (2006), for instance, note that:

\[T]he need for licenses is not entirely obvious nor, assuming that
licenses are needed, is it clear which restrictions are necessary or
desirable. From a welfare standpoint, the best way to ensure use
and re-use of software would be to place it in the public domain
without any license at all." (p. 17)

Thus, it is not entirely clear whether licenses play a role in ensuring the
viability of OSS nor is it clear whether di¸erent types of OSS licenses do
have di¸erent implications for the pace and dynamics of development.

Indeed, OSS software is very often assimilated to software in the public
domain. However, although OSS software is usually freely available to anyone
cares about making use of it, di¸erently from software in the public domain
it is protected by copyright and distributed under a license that may set
restrictions to its redistribution. OSS licenses di¸er as regards the amount of
restrictions they impose on licensees. In particular, so-called copyleft licenses
grant developers a narrower set of rights with respect to non-copyleft licenses
and thus dramatically reduce their ability to pro˛t from the direct sale of

1



the software and make more di‹cult the combined commercialization of OSS
and proprietary software programs.

In this paper, we aim to contribute to the understanding of the increas-
ingly important OSS phenomenon by focusing on the role licenses play within
OSS projects, and particularly on the comparative properties of the copyleft
and non-copyleft licenses (as exempli˛ed respectively by the GPL and the
BSD licence, the most popular in their classes). We build a formal model
that takes as a starting point the recognition of the speci˛c nature of the in-
vestments in software development{an aspect too often overlooked{and the
associated ex-ante ine‹ciencies in the investment choices arising as a conse-
quence of contractual incompleteness. The model highlights the implications
in terms of incentives to invest in software development of the alternative
property rights allocations realized through di¸erent OSS licenses.

The model shows the (perhaps counterintuitive) result that, in spite of
the fact that copyleft licenses impose more stringent restrictions on both
licensors’ and licensees’ residual rights of control relative to non-copyleft
licenses, they may induce higher levels of coordination of investment and thus
be preferred to non-copyleft licenses when complementarity is an important
dimension of investments.

The incomplete contracting framework we adopt is loosely related to the
\GHM approach", namely the collection of contributions by Sanford Gross-
man, Oliver Hart and John Moore (Grossman and Hart, 1986; Hart and
Moore, 1990; Hart, 1995), and to the other few contributions that have ap-
plied some insights from the GHM approach to the analysis of issues arising
in innovative contexts (see e.g. Aghion and Tirole, 1994; Arora and Merges,
2001). Di¸erently from the GHM approach and from the other mentioned
contributions, however, we introduce an additional dimension to the choice
of investments by agents. While in GHM-style models agents choose only
the level or intensity of speci˛c investments, agents in our model may choose
both the intensity and the degree of complementarity/speci˛city of invest-
ments1. Adding this further dimension is important because our focus is
on contexts of cumulative innovation in which it is important to assess not
only the intensity of incentives to invest but also the extent of coordination
of investment. This, in turn, implies that in evaluating the e¸ects of di¸er-
ent licenses their impact on both of these dimensions should be taken into
account.

This framework allows us to draw some interesting conclusions that,
among other things, may shed light on three stylized facts. The ˛rst, and

1In this respect, our approach can remind of Cai (2003), where the choice of the degree
of speci˛city is used to justify forms of common property.

2



most important, is the fact that copyleft licenses are much more widely
adopted than non-copyleft licenses, in spite of the more stringent restric-
tions they impose, and in particular in spite of the fact that they do not
allow developers to earn the higher pro˛ts associated to the possibility of ex-
post privatization of the software developments. Lerner and Tirole (2005),
for instance, report that 72% of OSS projects on the Sourgeforge database
adopt a GPL license, while only 7% of the projects in their sample adopt
the BSD. We believe that the dominance of copyleft licenses cannot be ex-
plained only in terms of ideology, as assumed by most of the literature, and
explain it on the basis of its greater e¸ectiveness in promoting coordination
of investments.

The second is the fact that there tends to be a correlation between the
type of OSS project and the type of license adopted. For instance, the BSD
is the license consistently chosen for setting standards that give rise to the
articulation of di¸erent projects, while the GPL is not usually adopted to
this end. Our model shows that this di¸erence can be attributed to the
di¸erent dynamics of coordination induced by the two sorts of licenses.

Finally, a third relevant but relatively unnoticed empirical regularity
is the fact that coordination mechanisms recurred to in copyleft and non-
copyleft communities tend to be very di¸erent. In particular, BSD commu-
nities tend to be close-knit groups with a limited number of participants
and tend to rely on strong social norms, repeated interaction as well as rela-
tively structured coordination mechanisms other than the license itself (one
example is the adoption of a voting committee of co-developers within the
Apache community, which uses a variant of the BSD license). GPL commu-
nities, by contrast, tend to involve a higher number of participants and a
less prominent role of social norms. In this regard, our model suggests that
the license itself is a more e¸ective coordination mechanism in the copyleft
relative to the non-copyleft case, so that it is reasonable to expect additional
coordination mechanisms to come into play in the latter case.

The paper is organized as follows. Section 2 explores the very rationale of
the choice of opening the source code. Section 3 describes the principal types
of OSS licenses, introducing the di¸erence between copyleft and non-copyleft
licenses. Section 4 presents a formal model that captures the main elements
of the comparison between copyleft and non-copyleft licenses. Section 5
concludes.

3



2. The choice of opening the source code

The de˛ning characteristics of OSS are (a) the free availability of its source
code, i.e. of the human-readable instructions expressing the di¸erent tasks
that have to be performed by the computer, and (b) the nature of the li-
cense under which it is distributed, which grants licencees a number of rights
(freedoms), namely the freedom to use (run) the program, to study how it
works, to modify and improve it, to redistribute it with or without modi˛-
cations2. Of course, the ˛rst condition (free access to the source code) is a
precondition for the second in that no improvement is possible in absence of
access to the source code3.

It is important to note that the choice to release a piece of software
under an OSS license does not involve giving up the copyright over it. This
distinguishes the choice to distribute the software under an OSS license from
the choice to release it in the public domain. In order to release his own work
in the public domain, the author of a piece of software must take some explicit
legal steps in order to disclaim the copyright over it, given that copyright
immediately attaches to original creations under the Berne Convention for
the Protection of Literary and Artistic Works of 1886. The release of the
software in the public domain entails that the consent of the author of the
software is no longer required for third parties to use and modify it. The
same result is achieved by OSS licenses through contractual means, rather
than through renouncing to property alltogether. However, di¸erently from
public domain software, by using an OSS license the licensor may impose

2The free software de˛nition makes explicit reference to the large set of rights accorded
by OSS licenses:

Free software is a matter of the users’ freedom to run, copy, distribute, study,
change and improve the software. More precisely, it refers to four kinds of free-
doms, for the users of the software: The freedom to run the program, for any
purpose (freedom 0). The freedom to study how the program works, and adapt
it to your needs (freedom 1). Access to the source code is a precondition for
this. The freedom to redistribute copies so you can help your neighbor (free-
dom 2). The freedom to improve the program, and release your improvements
to the public, so that the whole community bene˛ts (freedom 3). Access to the
source code is a precondition for this. A program is free software if users have
all of these freedoms. Thus, you should be free to redistribute copies, either
with or without modi˛cations, either gratis or charging a fee for distribution,
to anyone anywhere. Being free to do these things means (among other things)
that you do not have to ask or pay for permission.

3Note that OS software is to be distinguished from software whose licence allows to use
it freely, but not to modify it (e.g. Acrobat). In this case the software is free, in the sense
that is it distributed at no cost, but it is not open source.

4



speci˛c restrictions to some aspects of the redistribution of the software.
This will become clearer in what follows and will play an important role in
explaining the comparative properties of di¸erent types of OSS licenses.

The combination of free access to the source code and the wide scope of
rights over the licensed software creates an opportunity for multiple agents
to have simultaneous access to the same software program and eventually
invest in its development. However, at the same time, it may signi˛cantly
reduce the extent to which the developer of the software licensed under OSS
terms (or any other software developer) may pro˛t from the direct sale of
it, although important di¸erences exist in this regard in relation to the spe-
ci˛c type of OSS license chosen (on which more will be said in the following
section). The question therefore arises of why a rational individual would
ever choose to release her software under an OSS license. This question|a
"puzzle" for many|has been for long prominent in the literature on OSS. An-
swers range from the identi˛cation of the reputational and signalling bene˛ts
of contributing to OSS projects Lerner and Tirole (2002), to the recognition
of bene˛ts in terms of satisfaction of speci˛c user needs (von Hippel, 2002;
Johnson, 2002), to the pinpointing of various sorts of intrinsic motivations,
including the enjoyment of programming per se (Moglen, 1999) and an ide-
ological commitment to the norms of OSS communities and the very idea
that source code should be open (Raymond, 1998; Bergquist and Ljungberg,
2001).

In this paper, we disregard ideological explanations for the choice of an
OSS license and ground our analysis on a few empirically relevant observa-
tions. The ˛rst is that this choice does not necessarily entail renouncing to
any possibility to pro˛t from the software. Distribution at zero price is by
no means a de˛ning characteristic of an OSS licence, although most of the
people (and most of the literature) tend wrongfully to identify OSS licences
with free (in the sense of accessible at no cost) software. The two de˛ning
characteristics of OSS, however{free access to the source code and alloca-
tion to licensees of the right to modify a given software and redistribute
modi˛cations{imply that any licensor may in principle resell the software to
a third party. Given the public good characteristics of software (and thus
the possibility to reproduce copies of software code at virtually zero cost by
anyone) this, in turn, implies that the equilibrium price of the right to mod-
ify and sell modi˛cations is likely to be (close to) zero. However, it is still
possible from developers to earn a pro˛t from sale of the software, especially
if the software is not immediately published on the internet4.

4A typical situation may be the following: a customer contracts with a developer for the
production of a speci˛c software that is licensed under an OSS license, but not published

5



Other pro˛t possibilities, more relevant for our purposes, are open even
in the case in which the software is published on the internet. Indeed, in
many cases developers may pro˛t from the sale of complementary services
or customized solutions that include but do not coincide with the software
program. This is consistent with the fact that the business models currently
adopted in the software industry are increasingly based upon the idea that
it is service provision that should be sold rather than binary code (think
about the increasing importance of the Software as a Service model|SAAS
model).

The second relevant empirical observation, strictly linked to the previous
point is that, under the above circumstances, developers are interested in
maximizing the use value of the software they work with, rather than the
value of the software as a commodity to be sold. In other words, an impor-
tant reason why release under OSS licensing terms may be chosen is that this
strategy allows to gather contributions from other developers similarly inter-
ested in increasing the value of a software they use to provide complementary
services. This is consistent with all of the empirical analyses available to date
that con˛rm the relevance of user needs as the single most important driver
of contributions to OSS projects5.

The third observation is that an OSS strategy entails important technical
bene˛ts in a context of cumulative innovation such as software development.
Software innovation is strongly incremental, i.e. it results from a cumulative
process in which improvements build on previous versions and developers
rely both on their own and on others’ existing designs and examples in order
to incorporate them into new programs or adapt them to serve new purposes.

Cumulativeness implies that a given software constitutes the input into
further development e¸orts. In this context, it is technically possible to
independently develop two programs or software modules meant to be used
jointly without having access to the source code as long as some instructions
on the realization of interfaces are provided by the licensor of the original
software input. However, in keeping the source code secret, important gains
in technical e‹ciency are foregone. By opening the source code, by contrast,
improvements and complementary programs can be developed in a way that
increases the value of joint use of the software and optimizes the interaction

on the internet. The developer receives the stipulated payment by the customer and there
is no further redistribution of the software until either the original developer or the ˛rst
licensor (the buyer) decides to redistribute the software.

5Lakhani and Wolf (2003) in a web-based survey administered to 684 software devel-
opers in 287 F/OSS projects ˛nd user needs, both work- and non-work-related, to be the
overwhelming reason for contribution and participation. Similar results are obtained also
by Gosh, Glott, Kreiger and Robles (2002); Hertel, Niedner and Hermann (2002)

6



between the di¸erent programs/modules. In particular, only if the source
code of a given software is open it is possible to coordinate the development
e¸orts of di¸erent agents operating in a decentralized fashion (i.e. outside
of the boundaries of a ˛rm). In addition to this, access to the source code
can bring about as a side e¸ect improvements in the form of bugs or error
corrections or of the provision of more substantial additions.

This leads us to highlight the fundamental trade-o¸ at the heart of the
choice to open the source code. On the one side, opening the source code
increases the ability of other developers to contribute to the development
of the software either directly or by creating complementary applications,
hence it increases the potential for success of the software. On the other
side, it exposes the owner to competition and reduces pro˛ts. Indeed, the
choice to reveal the source code exposes the owner to an hazard due to the
possibility of misappropriation of important aspects of the internal designs of
the program or even wholesale imitation of the program. Having access to the
source code means that it is possible for non-owners to act to the detriment
of the owner in various ways, including by appropriating value-enhancing
characteristics of internal design that would otherwise remain hidden behind
the binary code and by replicating most of the functionalities performed by
the program.

This is due to the di‹culty of enforcing copyright in the context of soft-
ware. Copyright protects the textual expression, but not the functionality,
so that copyright infringement can be circumvented by rewriting a program
performing the same tasks as the original but with a di¸erent source code.
This is technically possible, and the cost of doing it is certainly much less
than the cost of rewriting the source code without having access to it. In-
fringement is very di‹cult ot detect, as there are many ways to conceal
similarities in the source code even for those who have the technical skills to
interpret it. Moreover, detection of infringement is almost impossible if the
copy is not available in source code, but only in binary form.

An implication of this is that the cost of opening the source code of a given
software program is lower when the software market success is declining. In
this case, the pro˛t obtainable through a closed source strategy is low, given
the low market value of the software, while an open source strategy may allow
to attract investments by other developers and may thus enhance the value
of the original software. This is consistent with adecdotal evidence such as,
for instance, the case of Netscape’s OSS release under OSS terms (under the
Mozilla trademark), occurred exactly under this sort of circumstances.

The existence of an incentive to open the source code may be particularly
appreciated in light of the fact that investments made in the development of

7



a given software program are speci˛c. This is a truism too often overlooked
in analyses of software innovation that we think is crucial to understand both
an initial developer’s decision to release a piece of software under OSS terms
and the decision by other developers to subsequently contribute to the im-
provement of that software6. Investment speci˛city implies that the decision
to release a given program under an OSS license may be motivated by the
objective of preserving, and possibly increasing, the value of the software by
attracting investments by other developers in order not to lose the speci˛c
investment made in the ˛rst place, while at the same time securing access to
most or all future developments. Indeed, the adoption of an OSS license im-
plies that both the original and subsequent developers have continued access
to the software they use to produce services in the ˛nal market.

To summarize, the above observations allow to clearly identify the circum-
stances within which we circumscribe our analysis. We consider a developer
who has chosen to open the source code of the software she has developed,
possibly because the software has lost its position of market leadership. In
order to revitalize the software a signi˛cant amount of investment would be
needed. By opening the software source code, the developer hopes to attract
the interest of other developers who may collectively provide an amount of
investment su‹cient to regain a good market position. In so doing, she is
able to preserve and even increase the value of the investment previously
made in the software.

It is important to note that the assumptions we make on the choice to
open the source code imply that we do not directly address the question
whether software development under an OSS license is superior to software
development under proprietary licenses in absolute terms. In other words,
we move from the empirically sound premise that the choice to open the
source code may be compatible with the incentives of a self-interested in-
dividual under speci˛c circumstances but we do not directly explore here
the issue of whether the same or better results could be achieved through
alternative means, such as for instance through a centralized organizational
solution involving the hiring of developers to work in-house on the project.

Although a comprehensive treatment of this problem is outside the scope
of this paper, it is possible to highlight some reasons why a decentralized so-
lution such as recourse to OSS license-mediated collaboration may be chosen
instead of a proprietary solution with centralized ownership. These rea-

6One important exception in this regard in the OSS context is the mentioned 2005 paper
by Lerner and Tirole where the authors stress in a footnote that the "hijacking" possible
under permissive licensing terms may deprive contributors of some of the bene˛ts from
participating to a project because it creates the possibility of hold up and that restrictive
licensing terms may be interpreted as a contractual response to this problem.

8



sons have to do, in particular, with the usual agency problems associated
to employment contracts. A centralized solution involves a need to provide
remuneration in order to motivate developers that, in turn, implies a need
for e¸ective selection of the most talented individuals. This determines not
only selection and monitoring problems but also, and most importantly, a
necessary reduction of the pool of developers. If it is important to ensure
the participation of a large pool of developers with heterogeneous human
capital these drawbacks may be decisive (on some aspects of this issue see
for instance Johnson, 2006).

3. The choice of the OSS license: copyleft vs. non-copyleft licenses

As mentioned before, OSS licenses can be roughly said to belong to two
types: copyleft and non-copyleft. The di¸erence between the two types
resides in the nature of the constraints they impose on the licensee’s freedom
to redistribute the modi˛ed version of the OSS-licensed software under terms
of his choice.

Non-copyleft licenses. This sort of licenses allows to release modi˛cations
of the software under a di¸erent licence, even a proprietary one. Well
known examples are the Berkeley Software Distribution (or BSD) licence,
the Apache License and the X11 license. The main obligation imposed by
these licenses concerns the need to give credit to contributors. All that is
needed for anyone to freely use non-copyleft-licensed software is to include
in the redistributed software the copyright notices (one of the notices, in
turn, requires that subsequent distributors also include the notice, so that it
passes from user to user).

Software put in the public domain, i.e. software whose author has ex-
plicitly given up copyright can be described, in terms of its implications
for incentives, as a nonproprietary licence with no associated constraints,
although in this case there is neither an owner nor a licence.

Copyleft licences. Copyleft licenses impose more stringent constraints rel-
ative to non-copyleft licenses. From our point of view, the most relevant
of such additional constraints concerns the obligation to licence future de-
velopments under the same terms. Thus, developers of contributions to the
original software code retain copyright over their creations but they must
distribute them under the terms of the initial license. This constraint is
imposed, among others, by the General Public Licence, or GPL (see section

9



2(b) of the GPL) 7, which is therefore a copyleft license and on which we
will focus in this paper.

Thus, copyleft and non-copyleft licenses di¸er in that the former signif-
icantly restrict licensees’ freedoms with respect to the latter. In particular,
the BSD (and in general all non-copyleft open source licences) grants de-
velopers the freedom to develop the OSS-licensed software and licence their
developments as proprietary, while the GPL does not. In other words, the
BSD, di¸erently from the GPL, grants developers the possibility to exclude
other users and developers from access to an improved version of the software
or from a software using the original one as a component. Moreover, copy-
left licenses also restrict developers’ freedom in another sense: they prevent
copylefted software from being combined with proprietary programs. This
entails the two major drawbacks of the GPL relative to non-copyleft licenses
usually emphasized in practitioners’ debate: (a) the fact that it reduces de-
velopers’ ability to combine proprietary and non-proprietary projects and
(b) the fact that it reduces incentives because it allows to reap lower com-
mercial bene˛ts. The latter drawbacks are generally assumed to be critical,
in the sense that they are taken to suggest the superiority of the BSD over
the GPL.

Given that conventional wisdom has it that any restriction to right-
holders’ and licensees’ freedoms has negative implications for incentives,
the absolute dominance of the GPL in quantitative terms appears puzzling.
Given that the BSD grants a broader set of rights to both licensors and
licensees we should observe a prevalence of the BSD over the GPL.

This is why most of the explanations o¸ered for why the GPL may work
have to do with ideology, either in the sense that the GPL constitutes a
means to ensure that the expectations of ideologically-motivated contribu-
tors are not frustrated by the commercialization of the result of their e¸ort
(see, for instance Frank and Jungwirth, 2001) or in the sense that the GPL
allows to attract ideologically-motivated contributions when other sources of
motivation are weak (Lerner and Tirole, 2005). Other reasons have to do
with the GPL ability to prevent forking (Maurer and Scotchmer, 2006) or to
reduce the extent of free-riding, particularly in the form of the privatization
of existing OSS projects (Gambardella and Hall, 2005)8.

7Section 2(b) of the GPL reads:

You must cause any work that you distribute or publish, that in whole or in
part contains or is derived from the Program or any part thereof, to be licensed
as a whole at no charge to all third parties under the terms of this License.

8The comparison of the costs and bene˛ts of these two forms of licensing from an eco-

10



In fact, we contend that there is no reason why the dominance of the GPL
should be explained only in terms of an ideological preference of developers.
A ˛rst step in the direction of an incentives-based explanation may be made
by clarifying the meaning of the two drawbacks mentioned above. As for the
˛rst aspect (sub (a)), it should be noted that the obligation to license de-
velopments based on GPL-ed software under the same GPL licensing terms,
which is often referred to as the ’viral’ GPL clause, does not imply that a
developer working on a copyleft program can be forced to distribute such
program. Distribution of copylefted software is a choice, not an obligation.
Only if he chooses to distribute the program, he has an obligation to do
so under the terms of the original license. Therefore a developer may well
use modi˛ed versions of GPL-ed software on her own, without sharing her
developments with others.

As for the second aspect (sub (b)), it is important to stress that, in
principle, developers may charge a fee as high as they wish (or can) for
the distribution of copylefted software. They have an obligation to apply
the terms of the original license at no charge to all third parties (see, for
instance, section 2(b) of the GPL) but this does not mean they have an
obligation to release the software itself for free9. Of course, for the reasons
mentioned in the previous section, it is highly unlikely that developers are
able to command a positive price for the sale of the copylefted software,
although they may pro˛t from the sale of assistance and/or complementary
services.

More important to the end of explaining the relative success in terms of
di¸usion of copyleft and non-copyleft licenses is the fact that the two types
of licenses impact di¸erently on developers’ ability to access future versions
of the software originally released under OSS terms. This, in turn, in‚uences
developers’ investment choices. The crucial importance of this feature of li-
censes becomes apparent by considering the cumulative nature of software
innovation and the speci˛c nature of investments in software development.
Cumulativeness implies that (a) the initial innovation(s) on which improve-
ments build upon is (are) always totally or partly incorporated into the ˛nal
output; or that (b) even if not incorporated, the initial innovation has to be
available to developers/consumers in order for them to be willing to use/buy
the program. As a consequence, if the original innovation input enjoys le-

nomic viewpoint has so far received scant attention (with the exception of Gaudeul (2005);
Bezroukov (1999)). Indeed, while the literature highlights a number of reasons why recourse
to the GPL may make sense, it does not explore the question whether the GPL may make
more or less sense than the BSD and under what circumstances this is likely to be the case.

9For more information refer, for instance, to the GPL FAQ webpage, available at
http://www.gnu.org/licenses/gpl-faq.html.

11



gal protection in the form of patents or copyright and unless its improver is
given ex ante a de˛ned set of rights to modify and redistribute modi˛cations
of the input, development gives rise to a situation of holdup between the
producer/owner of the input and the subsequent innovator. Moreover, the
hold up threat is made more relevant by the fact that in developing a given
software innovation, agents not only give rise to copyrightable software im-
provements, but also acquire know-how and competences that they can put
to full use only by having access to the original software.

While both types of OSS licenses mitigate to some extent this problem
relative to proprietary licenses, copyleft and non-copyleft licenses have very
di¸erent implications in this regard. In particular, although copyleft licenses
entail a narrower set of freedoms for both the original licensor and licensees,
they guarantee to both that they will have continued access to the software
in whose knowledge they have invested in and in all future versions of it
and therefore constitute a strong safeguard against the threat of hold up.
Non-copyleft licenses, by contrast, allow subsequent developers to turn their
contributions into proprietary and thus expose those developers that stick
to the OSS strategy to the the risk of opportunism and to a form of ex-post
hold up of the speci˛c investment in human capital they have made. This
holds even if developers are not excluded from access to older versions of the
software, given that they might be excluded from the most relevant contri-
butions from a technical and commercial viewpoint, i.e. those contributions
essential to earn a pro˛t in the market for complementary services. This im-
pacts both on the level and on the nature of the investment chosen ex-ante,
as will become clear in the following section.

4. A formal model of investment choice under different licences

The previous section has explained that the principal di¸erence between GPL
and BSD licenses resides in the fact that the latter allows developers, both li-
censors and licensees, to license their developments under proprietary terms.
Hence, if the choice between the BSD and the GPL is of some relevance, it
is because with positive probability, at a certain future stage, the latest and
most valuable version of a project under BSD can be excluded from access
and no longer be open source. Since the possibility to exclude and make the
project proprietary allows the developer to collect a price from other users
and developers, here is where the alleged superiority of the BSD in terms of
incentives resides.

In spite of this important di¸erence in the wording of the licence, projects
under BSD and under GPL very often show a similar degree of \persistence"

12



as open source projects. In other words, we do not frequently observe BSD-
licensed software turned into a proprietary product, although cases of this
sort do exist. There may be several reasons why ex post developers, though
allowed to do so, can decide not to exclude other developers from access.
Apart from ideological reasons, one reason is the fact that the conditions
that made the choice of an OSS strategy the best solution at the ˛rst stage
are still valid at subsequent stages for all developers. Another complementary
reason is that there might be high contracting and marketing costs, and this
is expecially true when the development is of small importance and/or the
contributor must incur high ˛xed costs to market and enforce his property
rights. When contracting costs are very high, the BSD behaves like a GPL10

In order to emphasize the di¸erence between the BSD and the GPL we
consider an \ideal" case where ex post contracting is without cost and there
are no \social norms" in the community of developers that keep developers
from excluding others and negotiating the conditions of access to their devel-
opments. By focusing on a simple single-period model, we assume that after
development has taken place all developers choose to sell their contributions
to others. We assume that bargaining is e‹cient, so that ex post each devel-
oper has access to each other’s contribution. In so doing, we consider a case
which is at the same time more favourable to the choice of the BSD than
real world conditions are, and which makes the di¸erence between the BSD
and the GPL larger than it actually is.

We consider a software which is an input to the production by each de-
veloper in the ˛nal market. Agents do not pro˛t from the direct sale of the
software but rather from providing assistance, customization or other services
to end-users and access to the source code constitutes a necessary input into
the provision of such services, so that software development constitutes a
byproduct of these activities, rather than the opposite.

4.1. Model setup

As previously mentioned, we use a formalization which reminds the Grossman-
Hart-Moore of incomplete contracts and property rights allocation.

We assume that each developer i makes an investment yi speci˛c to soft-
ware under an open source licence, whose technical quality is represented
by an index X. After the investment is made, she develops an innovation.
Innovations increase the value of X for developers as they use X to produce
services in their ˛nal market. Considering the set N of all developers, let

10When they are high but not high enough, contracting will take place, though some cost
is paid. The project becomes proprietary and transaction costs will reduce the payo¸.

13



XS be the level of X when contributions by developers in S are included.
Clearly, XS – XR if R  S.

Let ıi be developer i’s pro˛t in the ˛nal market. We have ıi = ıi(yi; X),
with

@ıi(yi; X)

@yi
> 0

@ıi(yi; X)

@X
> 0

@2ıi(yi; X)

@X@yi
> 0 (1)

We allow for an e¸ect of yi on ı independent of the e¸ect through X in order
to consider that (1) the investment by i in the development of X can increase
her (X-speci˛c) human capital, or can have a signalling e¸ect on the ˛nal
market; (2) the investment can improve the software in a developer-speci˛c
way, since developers can use \specialized" versions of X. In this sense, the
e¸ect of yi on X must be thought of as the transferrable e¸ect of yi, the
e¸ect of yi which bene˛ts the whole community.

The presence of the \direct" e¸ect of yi on ıi is very important in the
explanation of why developers may choose an open source solution.

We consider the ex post interaction under the two cases of GPL and BSD
licence.

GPL. In the GPL case, contributions can be freely accessed by other de-
velopers; they will be included in X, and developers are rewarded for using
X to provide services in the ˛nal market. The payo¸ of developer i is:

ıi(yi; XN)` yi: (2)

BSD. When instead developers are allowed to exclude other developers
from access to their contribution, innovations are merged only after the in-
novator grants access to other developers. In order to make the innovation
available, the developer can ask a price, so that bargaining will take place
among developers in order to allocate the surplus from innovations. Each de-
veloper’s share in this surplus is determined by her bargaining power, which
in turn is a function of how important is her own contribution.

Considering that bargaining is e‹cient, we will make use of the concept
of Shapley value. The use of this concept has an established tradition in
the economic analysis of incomplete contracts and property rights Hart and
Moore (1990). The Shapley value considers the share of a bargainer as a
function of her value for each possible coalition of bargainers S „ N .

The value for developer i is

X
S„N ji2S

(S)
h
˝(S)` ˝(Snfig)

i
; (3)

14



where

(S) =
(jSj ` 1)!(jN j ` jSj)!

jN j!
(4)

and where ˝(S) is the total pro˛t obtained by coalition S, or

˝(S) =
X
j2S

ıj(yj; XS) (5)

so that ˝(S)` ˝(Snfig) is how much the pro˛t of coalition S is reduced if
i leaves it.

The share represented by the Shapley value is a weighted average of the
contribution of i’s development to all possible subsets of developments11.
The formula is often justi˛ed by imagining that the coalition N is formed
one actor at a time, with each agent obtaining her contribution (as if she
could make a take-it-or-leave o¸er to the agents already in the coalition),
and then averaging over the possible di¸erent permutations in which the
coalition can be formed12.

4.2. The choice of the level of co-speci˛city

In addition to the choice of the investment level yi, we consider as very
important the choice of the nature of the investment in development. Each
developer can choose to make her development based on X more or less
co-speci˛c to developments made by others. At one extreme, developer i’s
contribution can be stand alone and require only the basic version of the
software. At the other extreme, her contribution can have value only if used
together with all the other contributions. More generally, the value of the
contribution as an improvement of X can be increasing in the number of
other contributions that are included. To express it formally, co-speci˛city
implies that @XS=@yi > @XR=@yi if R  S.

Encouraging the choice of a more co-speci˛c investment is a way to in-
crease, for a given investment level, the value of XN .

On the other hand, since the degree of co-speci˛city is an individual
choice of each developer, the licence can a¸ect this choice. We illustrate
the point by using a simple two-agents speci˛cation of the model presented
above. This allows to illustrate and discuss the basic characteristics of the
interaction in the simplest possible setting.

Let X be Xf1;2g = „1y1 + „2y2 when contributions are merged together,
and Xfig = —„iyi when only i’s contribution is used13.

11Note that
P

S„N ji2S
(S) = 1.

12Taking all possible orderings of jN j agents as equally likely, (S) represent the proba-
bility that i will be ranked just after the agents in the set Snfig.

13Therefore, @Xf1;2g=@yi = „i and @Xfig=@yi = —„i

15



Depending on the choice of the parties with regard to the degree of co-
speci˛city, „1 can assume the following values:

co-speci˛c investment by: both only 1 only 2 none

contributions merged „112 „11 „12 „10

only contribution i —„11 —„10

Hence, we indicate by „i12 the marginal e¸ect of yi on X when both 1
and 2 choose to work on co-speci˛c projects and the two contributions are
merged; if the contributions are not merged, the e¸ect is —„ii (note that in
this case it is not relevant if the other developer has chosen a co-speci˛c
investment or not). And so on.

It seems reasonable to assume that „i12 > „ij > „i0: the choice of a co-
speci˛c investment increases the value of the investment when contributions
are merged, and the value is maximum when both choose the co-speci˛c
investment14.

If contributions are not merged, it is better not to make a co-speci˛c
investment, hence —„i0 > —„ii. We assume without loss of generality that —„ii = 0
(i = 1; 2).

Note that the socially optimal choice is the co-speci˛c investment, since
in equilibrium all contributions are merged, and all contributors have access
to Xf1;2g.

Let us compare the two licencing regimes of GPL and BSD.
Under the GPL, each developer has access to X after the development

activity has taken place. There is no reason not to contribute: each developer
gets (2). The level of co-speci˛city will be chosen so that Xf1;2g is maximized:
the socially optimal outcome „i12 will result.

Things are di¸erent under the BSD. In this case, developers’ payo¸s de-
pend on their contractual force, which in turn depends on the value of their
contribution to all possible coalitions, not only to N (in the two-agents case,
each developer can belong to a coalition with the other developer or simply
stay alone). According to the solution de˛ned in (3), which in the two-agent
case coincides with the Nash bargaining rule (the parties split 50:50 the dif-
ference between the payo¸ with cooperation and the payo¸ when they do
not cooperate), i gets

1

2

h
ı1(y1; Xf1;2g) + ı2(y2; Xf1;2g)` ı1(y1; Xf1g)` ı2(y2; Xf2g)

i
+ ıi(yi; Xfig)

(6)

14Additionally, we can assume strategic complementarity in the choice to be co-speci˛c:
„i12 ` „ij > „ii ` „i0.

16



or, for developer 1:

1

2

h
ı1(y1; Xf1;2g) + ı2(y2; Xf1;2g)` ı2(y2; Xf2g)

i
+
1

2
ı1(y1; Xf1g) (7)

with a similar payo¸ function for developer 2.
We now consider the optimal choice of the level of co-speci˛city by the

parties. To simplify the analysis and make our conclusion more clear-cut, we
disregard the choice of yi assuming yi = 1. We will remove this restriction
in the following section.

Substituting for X in the payo¸ function (6), and de˛ning for notational
convenience ı̂(X) = ı1(X) + ı2(X), we can consider the (noncooperative
Nash) equilibrium of the choice of the co-speci˛city by the parties.

Consider the case that developer 2 chooses co-speci˛city. Developer 1
will choose co-speci˛city only if

1

2
ı1(—„10) +

1

2

“
ı̂(„12 + „22)` ı2(0)

”
(8)

is lower than
1

2
ı1(0) +

1

2

“
ı̂(„112 + „212)` ı2(0)

”
(9)

or
ı1(—„10)` ı1(0) < ı̂(„112 + „212)` ı̂(„12 + „22) (10)

On the other hand, if developer 1 does not choose co-speci˛city, developer
2 will choose co-speci˛city only if

1

2
ı2(—„20) +

1

2

“
ı̂(„10 + „20)` ı1(—„10)

”
(11)

is lower than
1

2
ı2(0) +

1

2

“
ı̂(„12 + „22)` ı1(—„10)

”
(12)

or
ı2(—„20)` ı2(0) < ı̂(„12 + „22)` ı̂(„10 + „20) (13)

Therefore co-speci˛city, though e‹cient, might not be an equilibrium
strategy under the BSD. This will be the case if ıi(—„i0)`ıi(0) is high enough
with respect to the gains from co-speci˛city.

A numerical example To show that the e‹ciency loss can be substantial,
consider the following example with n + 1 developers, with a large agent
(named n+1) and n small agents. We assume that coalitions of small agents
not involving the large one give no advantage in terms of co-speci˛city, so
that this example can be seen as an extension of the simple two-agent case.

Assume that, when it is merged into X, developer i’s (i < n) contribution
to ı̂ is equal to:

17



- 24 both agent i and agent n+ 1 have chosen co-speci˛city;
- 20 if i has chosen co-speci˛city but n+ 1 has not;
- 12 if neither i nor n+ 1 has chosen co-speci˛city.
We are assuming that developers other than n+1 do not a¸ect developer i’s
contribution.

Assume that ıi (stand alone pro˛t for a small developer) is equal to 10
when he chooses not to be co-speci˛c, zero when co-speci˛city is chosen.

Finally, assume that by not being co-speci˛c the stand alone pro˛t ın+1

is higher by F than if she chooses to be co-speci˛c, with F > nˆ 2.
Consider the case that all n small developers choose co-speci˛city. The

total pro˛t is n ˆ 24 if n + 1 is co-speci˛c. However, this is not optimal
for n+ 1, since her payo¸ is 1

2
ı̂ + 1

2
ın+1 and she can increase ın+1 by F by

decreasing ı̂ by nˆ2 < F (this is the e¸ect of choosing not to be co-speci˛c).
However, if n+ 1 chooses not to be co-speci˛c, each i must compare his

pro˛t when co-speci˛c (1
2
20) and when not co-speci˛c (1

2
12 + 1

2
10). He will

choose not to be co-speci˛c, and this will be the only Nash equilibrium of
the game.

Note that, in the example, there is no real advantage from merging the
contributions: the total pro˛t is n ˆ 12 if contributions are merged, and
n ˆ 10 + F if they are not. In any case, they are much lower than if co-
speci˛city is chosen by all developers, in which case we would have nˆ 24.

We summarize our conclusion in the following

Proposition 1. A BSD licence can induce the choice of a lower degree of
co-speci˛city of develoment than is socially optimal. The social optimum
will be secured by the GPL.

4.3. Incentives to invest

The analysis of the previous sections disregarded the incentive to invest, i.e.
the choice of yi. Although the conclusion of proposition 1 is not a¸ected
by this simpli˛cation, the comparison between the two licences is about the
level of X and of ıi, and the level of yi is relevant on this regard. Moreover,
it is because allegedly it induces a higher level of yi that the BSD is often
considered superior to the GPL in terms of incentives.

In the GPL case, the value of a marginal increase in yi is:

@ıi(yi; XN)

@yi
+
@ıi(yi; XN)

@X

@XN

@yi
` 1 (14)

developers will invest as long as this is higher than zero.

18



In the case of BSD, the marginal e¸ect of an increase in yi is (we di¸er-
entiate (3)):

X
S„N ji2S

(S)

"
@ıi(yi; XS)

@yi
+

X
j2S

@ıj(yj; XS)

@X

@XS

@yi

3
5` 1 (15)

Comparing this expression with (14), we notice that:

› the incentive to invest due to the direct (hydiosincratic) e¸ect of yi on
i’s pro˛t on the ˛nal market, is lower under the BSD as, because of
(1),

@ıi(yi; XN)

@yi
>

X
S„N ji2S

(S)
@ıi(yi; XS)

@yi
; (16)

› in the BSD case, each developer reaps a share of the bene˛ts of her
development on the pro˛ts of all developers. If this is higher than the
bene˛t on ıi only, or

@ıi(yi; XN)

@X

@XN

@yi
<

X
S„N ji2S

(S)
X
j2S

@ıj(yj; XS)

@X

@XS

@yi
(17)

then the BSD scores better on this regard.

Under the GPL, the incentive to invest is given by the perspective to use
the software in one’s ˛nal market. Development is somehow a byproduct
of the investment to enhance one’s X-speci˛c skills and to introduce those
improvements in X that a¸ect most ıi.

Under the BSD, the incentive to increase ıi is less important, but there
is the opportunity to \sell" innovations to other developers.

Although it is not a priori possible to tell if the incentives to invest by
those who participate to the development of X is higher under one system
or the other, the presumption is that in many cases the second of the two
e¸ects is more important, and the BSD might induce a higher level of yi.

It is worth emphasizing that even when the BSD induces a higher yi,
it is not possible to draw a conclusion on the superiority in general of one
licence of the other, since the overall e¸ect of investments on X (hence on ˝),
depends on the combined e¸ect of the choice of the nature of the investment
(more or less co-speci˛c) and the intensity of investments.

However, some conclusions can be reached in some special cases.
Note that the inequality (17) is less likely to be veri˛ed the lower are

the terms @XS=@yi with respect to @XN=@yi, i.e. the more important is the
e¸ect of co-speci˛city.

19



This suggests what are the circumstances such that the GPL induces a
higher yi. Once again, co-speci˛city can play a central role.

Consider the case in which developers choose to make a co-speci˛c invest-
ment, and we make the assumption (somehow extreme) that their investment
is valuable only if the coalition N is formed (under these circumstances, the
choice of a co-speci˛c investment is an equilibrium both with GPL and with
BSD). In other words, we are considering that @XS=@yi = 0 for S  N . In
the two agents case, this amounts to the assumption that —„ii = 0.

From (15), we have that the ˛rst order condition with regard to the choice
of yi is now:

1

jN j

@ıi(yi; XN)

@yi
+

1

jN j

X
j2N

@ıj(yj; XN)

@X

@XN

@yi
= 1 (18)

The second term on the left hand side represents the average e¸ect of an
increase in yi on the individual pro˛t of developers. Depending on the cases,
this can be higher or lower than the second term in the expression (14).

By comparing with (14), we realize that the level of y1 is likely to be
higher under the GPL for most i. The loss in incentives (with respect to the
GPL) is higher the more important is the e¸ect of yi on ı

1, @ıi(yi; XN)=@yi.
A similar result is obtained under less extreme hypotheses on @XS=@yi,

if we assume that the use of the software is pro˛table only when the tech-
nological index X reaches a certain level. This may be justi˛able if there
are competing project. As previously explained, the fact that a software is
\lagging behind" is a reason why often the open source solution is chosen.

Hence, if we assume that ıi(X) = 0 for X < —X and XN – —X only when
the co-speci˛c investment is chosen, the ˛rst order condition is once again
(18).

We summarize the conclusion of this section in the following

Proposition 2. Taking into account incentives to invest, the BSD li-
cence can be expected to induce a higher level of yi. However, the more
important is the e¸ect of co-speci˛city on X or on ˝, the lower is the
chance that yi is higher under the BSD.

5. Concluding remarks

In this paper, we have considered an issue that has so far received relatively
scant attention in the analysis of the open source phenomenon, namely the
role played by OSS licenses and particularly, the di¸erent implications en-
tailed by the adoption of copyleft vs. non-copyleft licenses. The main metric

20



chosen for the comparison between GPL and BSD licenses is the extent to
which they are able to promote investment in software development and,
more speci˛cally, coordination of the development e¸orts of agents operat-
ing in a decentralized fashion. This issue has been considered in a context of
cumulative innovation characterized by incomplete contracting and speci˛c
investments that has never been used to this purpose before. The model,
loosely inspired by the GHM approach, emphasizes the rather counterintu-
itive result that, although copyleft licenses impose more stringent restrictions
on both licensors’ and licensees’ freedoms, they might be preferred to non-
copyleft licenses. This is true, in particular, when it is important to ensure
a high degree of co-speci˛city of investments by di¸erent agents.

An important quali˛cation of the result is necessary. We have described
the interaction under the BSD in a quite idealized way, considering that ex
post contracting is e‹cient and that developers choose to \privatize" their
development in the second round. As already noted, this might be very
di¸erent from what is usually observed in the case of BSD projects, where
developers contribute a common project without \selling" it to the commu-
nity. However, our conclusion does not seem inconsistent with this observa-
tion when we allow for a role for community social norms: casual evidence
seems to suggest that BSD-like projects are more often used by \closed"
groups of developers who work on project where the feedbacks from out-
side are limited. The major role played by face-to-face interaction may make
the licence of secondary importance in securing co-speci˛c e¸ort, while at the
same time a less constrained licence can encourages independent investments
by other developers. The GPL remains a better choice when development
feedbacks are important in a context where relations between developers are
more \anonymous".

References

Aghion, P., Tirole, J., 1994. \On the management of innovation". Quarterly
Journal of Economics, vol. 109, pp. 1185{1207.

Arora, A., Merges, R. P., 2001. \Property rights, ˛rm boundaries and r&d
inputs". mimeo, Carnegie Mellon University and U.C. Berkeley School of
Law.

Bergquist, M., Ljungberg, J., 2001. \The power of gifts: organizing social re-
lationships in open source communities". Information Systems Journal,
vol. 11, pp. 305{320.

21



Bezroukov, N., 1999. \Open source software development as a special type of
academic research: critique of vulgar raymondism". First Monday, vol. 4.

Cai, H., 2003. \A theory of joint asset owneship". RAND Journal of
Economics, vol. 34, pp. 63{77.

Frank, E., Jungwirth, C., 2001. \Reconciling investors and donators|the
governance structure of open source". Working paper, University of Zurich.

Gambardella, A., Hall, B. H., 2005. \Proprietary vs. public domain licensing
of software and research products". Working Paper 11120, NBER.

Gaudeul, A., 2005. \Public provision of a private good:
What is the point of the BSD license?" URL
http://ideas.repec.org/p/wpa/wuwpio/0511002.html.

Gosh, R. A., Glott, R., Kreiger, B., Robles, G., 2002. \The free/libre
and open source software developers survey and study". URL
http://www.infonomics.nl/FLOSS/report.

Grossman, S. J., Hart, O. D., 1986. \The costs and bene˛ts of ownership: a
theory of vertical and lateral integration". Journal of Political Economy,
vol. 94, no. 4, pp. 691{719.

Hart, O. D., 1995. \Corporate governance: some theory and implications".
Economic Journal, vol. 105, pp. 678{89.

Hart, O. D., Moore, J., 1990. \Property rights and the nature of the ˛rm".
Journal of Political Economy, vol. 98, pp. 1119{1158.

Hertel, G., Niedner, S., Hermann, S., 2002. \Motivation of software develop-
ers in the open source projects: an internet-based survey of contributors
to the Linux kernel". Research Policy, vol. 327, pp. 1159{1177.

Johnson, J. P., 2002. \Open source software: public provision of a public
good". Journal of Economics and Management Strategy, vol. 11, no. 4,
pp. 637{62.

Johnson, J. P., 2006. \Collaboration, peer review and open source software".
Information Economics and Policy, , no. 18, pp. 477{497.

Lakhani, K., Wolf, R. G., 2003. \Why hackers do what they do: under-
standing motivation e¸orts in free/open source projects". Working Paper
4425-03, MIT Sloan School of Management.

22



Lerner, J., Tirole, J., 2002. \Some simple economics of open source". Journal
of Industrial Economics, vol. 52, pp. 197{234.

Lerner, J., Tirole, J., 2005. \The scope of open source licensing". Journal
of Law Economics and Organization, vol. 21, no. 1, pp. 20{56.

Maurer, S. M., Scotchmer, S., 2006. \Open source software: the new in-
tellectual property paradigm". In: Hendershott, T. (ed.), Handbook of
Economics and Information Systems, Elsevier, Amsterdam.

Moglen, E., 1999. \Anarchism triumphant: free software and the death of
copyright". First Monday, vol. 48.

Raymond, E. S., 1998. \The cathedral and the bazaar". First Monday, vol.
330.

Rossi, M. A., 2006. \Decoding the Open Source puzzle: a survey of theoret-
ical and empirical contributions". In: Bitzer, J., Schroder, P. (eds.), The
economics of Open Source Software development, Elsevier, Amsterdam.

von Hippel, E., 2002. \Horizontal innovation networks: by and for users".
Tech. Rep., MIT Sloan School of Management.

23


