Organizational arrangementsin Commons-Based Peer Production.
The Case of Debian and Take the Bus Project.
Inna Lioubareva and Barbara Feledziak

EconomiX, Paris X-Nanterre
inna.lioubareva@u-paris10.fr

Abstract.

This paper analyses the emergence of organizatanahgements in Commons-Based Peer
Production (CBPP). It draws on the evolutionary amwmpetence-based theories and
substantiates how the specific arrangementdivision of labour, authority structure and
approach to conflict resolutior permit to keep the integrity of projects and tsae
efficient cooperation. The paper argues that wiseseH-organization is the prevalent form in
the CBPP, Free Licences play an important roletimcturing interactions. It demonstrates
that this institution explains the emergence ot#meorganizational arrangements within the
CBPP. Thereto, two different organizational ardititees are put forward: Take the Bus
Project published under the Creative Commons liee(@llective music creation) and
Debian published under the GPL (collective softwdevelopment). Finally, the paper
substantiates that the choice of a licence for ghgects is non-random: coordination
introduced by the licences meets the inherent cheniatics of the software and music

contents.

Keywords:Evolutionary approach; Collective production; Smifjanization; Licences;
Production coherence; Decomposability.

Acknowledgements.

We gratefully acknowledge the helpful comments suggestions from Eric Brousseau,
Michel Delapierre, Frederic Gannon, Fabrice Roaid#a and Maria Alessandra Rossi, as
well as the permission to use the study on the C§mence Software realized in July 2005 by
Nicolas Auray and Michael Vicente, ENST, Paris. W0 thank the leader of Take the Bus
project, Philippe Chavaroche (Ana Boat), and treatmr of the Musique-libre.org platform,
Bituur Esztrem, for informative discussions. Norfetttose who have helped can be held

responsible for the defects that remain, or fondilegvs expressed here.

I ntroduction.

The emergence and expansion of a specific modeoofuption called the Commons-
based Peer Productio(CBPP) is a recent phenomenon. The specificithefCBPP consists
of two aspects: the way the products are createditsnproperty philosophy [West and

Gallagher, 05].

First of all, the membership, in the case of CBRPrelatively open. As a result,
participants with different skills and experiencgsographicall§ dispersed, can exchange
theirworks-in-progressvhile gaining “extra sets of eyes to catch missakaentify problems,
and improve quality” [Lee and Cole, 03]. Secondtipe coordination of the CBPP
decentralized and distributed system is ensuredhbyscope of informal norms, without
relying on methods of command and control. The &mmuales are represented only by means
of free licences, such as the GNU General Publeengée (GPL), the Creative Commons
licence (CC), the BSD licence, etc. Despite sompoitant differences in the structure of
these licences, their essence consists of thethddauthors do not renounce their rights but
only the monopoly rent such rights would authoriisea copyright regime” [Jullien and
Zimmermann, 06]. In practice it means that funailorwork (such as software,
encyclopaedias or dictionaries), artwork or otheative contents are publicly available (for

example, on the Internet) and can be shared anserg {ibid.].

On the one hand, “connecting a large amount of individuals aroundoamon

project and without any closure... is a way to taklwamtage of a fantastic potential of

! The concept was firstly defined as “Commons-bg=est production” by Y. Benckler in “Coase’s Penguin
Linux and the Nature of the Firm” [Benkler, 02].

2 The fact that participants in the CBPP are usugglygraphically dispersed doesn’t deny that depenoli the
task, in some situations, “physical” face-to-faamtacts are indispensable. For example, in the &eliSS
project the role of collective meetings is crucielowever, by contrast to some firm-based model ehes
“physical” contacts are of periodic nature.

distributed skills” [Ibid.]. This efficiency of theCBPP in terms of product quality (its
adequacy to the users’ needs, security and varetirgely discussed in the literature (for
example, among others [Lee and Cole, 03]; [Bonat@nd Rossi, 03]; [Moon and Sproull,
02]; [Benckler, 02]). On the other hand, by conmegtheterogeneous individuals working
together in such a decentralized and distributesimaa the CBPP could make it more
difficult to ensure the coherent and synergic coafpen: to achieve effective cooperation, it
takes complex processes of individual and collectearning facilitated within the shared

organizational context ([Johnson, 92]; [Daft anditke84]).

The purpose of our study is to examine the ememgaricparticular organizational
arrangements which allow the eventual efficiencgalfective innovation in the CBPP. This
paper focuses on the analysis of the link betwesfiosganization and institutions in the
CBPP. It argues that whereas agents make theicehanainly on the bases of their informed
interpretations of local information and self-orgaation is the prevalent form [van Wendel
de Joode, 05], there is one institution, namelye Rieences, which precedes the interactions
among participants in the CBPP. We show that th&itution plays an important role in
structuring interactions and explains, at leasttiglyr, the emergence of organizational

arrangements within the CBPP.

We explore the competence-based and overlappiniyitentary approaches ([Nelson
and Winter, 82]; [Dosi and al., 00]; [Hodgson, 98}larengo and al., 00]) considering
organizations as a “repositories of knowledgeind analysing the relation between

organizational architecture and organizational Kedge. According to this literature,

% Organization can be defined asstaucture of elemenisubsidiaries, divisions, teams, individual pedet
have resources amdpertoires of actiongcompetences), wittlecision ruleghat goverrchoicefrom those
repertoires, to achievgoals in co-ordination(which include governance) between those elenfents.
[Nooteboom, 04]

“organizational forms map into diverse a) problemnepresentations, b) problem
decompositions, c) task assignment, d) heuristicsahd boundaries to exploration and
learning,) mechanisms for conflict resolution roweterests but also over alternative
cognitive frames and problem interpretations.” [Btego and al., 00] With respect to these
dimensions we will analyse the emergence of thyped of organizational arrangements in
the CBPP: authority structure characterizing tretaince of decision making and underlying
problem representations; labour division and dstion of roles characterizing

decomposition rules, process of task assignment laouhdaries to exploration; and
mechanisms for conflict resolution. Our analysiBeeeon the comparative study of two
distinct projects representing the CBPP — the Delpiaject (GPL) and the Take the Bus
Project (CC licence) - which correspond respecfiviel collective software and music

creation.

The first section (1) introduces the Debian and Wake the Bus projects as
representative examples of the CBPP in their res@ecdomains: it describes the basic
principles of the projects’ functioning (1.1 and2)l.and the licences these projects are
published on (1.3). The second section (2) ainteeatinalysis of the structuring of particular
organizational architectures in Debian and in Téke Bus and puts forward that these
architectures emerge in response to the coordmaitimciples introduced by the licences: it
compares the projects following the above-mentioasgects: authority structure (2.1),
labour division (2.2) and conflict resolution (2.3)he third section (3) shows that the
publication of the projects under particular licegds a non-random choice: it demonstrates
that coordination form introduced by the licencesemthe inherent characteristics of the

software and music contents which are very diffebgymnature.

1. CBPP and Free Licences: Debian and Take the Bus Project.

The most well-known case where the CBPP is appiidde development of the open
source software (OSS). However, its range of apfiio has expanded quickly to other
knowledge-intensive domains such as music andititez. Our analysis of the organizational
arrangements within the CBPP relies on the comparatudy of the cases of collective
music (Take the Bus Project) and software credtimbian). Both cases exemplify the CBPP
with its specific features described above, but s@amportant differences lie between these
projects. One of the most important ones concdrasize of the projects and their life span:
the Debian project has existed since 1993 and wegahousand of participants; the Take the
Bus Project was initiated only in September 2008 @msists of thirty artists. However both
projects are to a certain extent representatii@eif domains and, hence, permit us to reach

some general conclusions about the CBPP functioning

1.1. Debian.

The Debian project, published under the Generali®ulzence (GPL), was initiated in
1993 by lan Murdock, a student from Purdue Uniwgrdt was the first attempt to create a
complete operating system distribufidrased on the Linux kernel. Debian operation system
includes a large number of applications and 14Gterént software components, called
“packages®. The development of Debian consists in the accismplent of different tasks
such as packaging, development of patches andixegy Support of the server infrastructure,
translation of documents and web pages, developmiespecific management tools, etc.

Packaging remains one of the most important as/itvithin the project and most of the

* In the OSS, “distribution” is the term designatiag official release of the operating system retmye
installed on the end-user computer.

°To create a distribution, it is necessary to imm@amdifferent functionalities. Package is a sult-mdrthe
operating system which permits to add a particfuactionality. “Packaging” generally consists in kivg the
source code ready to be installed.

developers work on it. Packaging does not necdgsevolve writing of source code

(sometimes the developers use the code developethbks). The source code itself is a type
of prepared raw material, whereas packaging cooredgto the creation of a software ready-
to-use for specific purposes. The integration qgfagkage to the distribution is a complex
operation which imposes many constraints: softvsai@uild correspond to the GPL licence’s
terms, and to a large number of technical feattoessure the package’s compatibility with

other parts of the Debian distribution.

During the span of the project’s existence, eightrithutions (versions) were officially
published and the ninth is expected soon. The tfaat today Debian unifies nearly one
thousand of developers from all over the globe awdy the years, remains the most popular
free distribution of the Linux operating systemh#xts the consistency of the development

process in Debian.

1.2. Take the Bus Project.

The Take the Bus project is relatively new as veasllthe whole CBPP initiative in
music (the oldest project, CC Mixter, has existedes 2002). Take the Bus was initiated in
2005 by Philippe Chavaroche and gathers todayythirsicians from different collectivities

and countries. The project is published under tfeattre Commons (CC) licence.

Since the beginning of Take the Bus, fifteen mumpositions were collectively
created and all of them are available on severaliemlatforms on the web. According to the
statistics published on the Musique-libre.org welydihe last composition of Take the Bus
was downloaded and streamed 550 times in the spaneomonth since its creation. The
composition posted one year ago was downloadedsaedmed 980 times, which is more

than the average number of times on this platfdihma éverage is 840 times). At present the

Take the Bus project has already gained recognitithin the free music movement and

several new compositions are in the pipeline.

The development of music in this project procedusugh several stages. Firstly, the
leader of the project provides some informationualtbhe tempo and the lyrics that serve as a
common base. On this basis contributors create gieaes of music and send their folders to
the leader, whose most important role consistshen gelection and final arrangement of
numerous folders in order to create a single musimposition. If the contributors are
satisfied by the result, then, they create coletyi the cover for the final composition and
provide it with the tags to signal the terms of ffsdected license for future users. The next
step is to upload this “package” on the server tandiffuse it on the different platforms. At
this stage the resulting creation becomes a topmudsed among the listeners (members of
the project and others). Then, the composition v@slon the basis of the remarks and

propositions received.

The main feature of the Take the Bus project whitshinguishes it from other music
projects based on the CBPP is that the sphere apjlication is not limited to an exclusive
musical styl& all the compositions created within Take the Bafong to different musical
styles. We think that this feature is of particularportance, because it indicates that the
application of the CBPP in music can be manifoldonk this viewpoint we propose to
consider the functioning of the Take the Bus priogeca representative example of the CBPP

in this area.

® For instance, CC Mixer specialises only in the®temusic, HiphopDomain creates rap music anduFieaf
Album produces French Music.

1.3. Licences in Debian and Take the Bus Project.

The development of all the projects within the CBRd&ts with the choice of a licence.
The Debian project is published under the GPL whiets chosen by the project’s initiator.
This licence mobilises in a specific manner theilsinprinciples as traditional copyright, but
in order to protect four essential users’ rightsetiom to run the program, to study how it
works, to modify the program, and to redistributeli is based on the copyleft and the
paternity principles. Copyleft corresponds to tlestriction that all new pieces of code,
“derived work”, must be licensed under the GPL ahdnce, the source code must be
available to all users of the software. The patgrpiinciple means that all the contributors
participating to the software creation have to bmed in the derived work. The last but not
the least principle introduced by the GPL is thatjalecision making and the norm of
authority based on collective recognition: whilengefirst of all a political initiative, the

publication of the project under GPL signalisesgh evel of internal democracy.

The Take the Bus Project is published under thdi€ce. The basic principle of this
licence is that authors have the possibility tood®from an array of options, in particular to
permit or not the commercial use or derivative vgprks well as to require or not attribution
and share alike. By contrast to the Debian projecifake the Bus the licence, or more
precisely theterms of the licence, become themselves the result oégotiating process
between the leader and potential contributors. rRiale contributors, who decide to
participate, express their opinion about the lieeterms. Once the consensus among the
potential participants and the leader is reachss ptoduction starts. In the case of the Take
the Bus Project, CC imposes the respect of thempateight, does not permit the use of the
product in a commercial way and forbids modificaidand hence does not contain a share-

alike clause).

Thus, one can mention two important differencesvben the aforementioned licences.
Firstly, the publication of Debian under the GPpresents an approach “to take or to leave™.
potential participants either agree on the licemt¢erms or they do not join the project. An
opposite situation takes place in Take the Buserga! participants express their opinion on
the terms of the licence before the launch of tla@nnproduction process. Secondly, GPL in
Debian introduces aex postcoordinated system, where no decision rights iauexl fbefore
the development itself (the leader is not necegstme initiator of the project). By contrast,
CC in Take the Bus fixesx antethe allocation of decision rights (non-modificatiolause)
and the restrictions on the use (only non-commkusia). Next section will demonstrate that
the licence choice influences the emergence oficpdat organizational arrangements in

Debian and Take the Bus projects.

2. Emergence of organizational arrangementsin CBPP: role of free licences.

In this section we raise the question of how indinal actors and groups dispersed
across time and space co-ordinate their effortactoeve coherent and synergic innovation
processes. The existent literature on CBPP orgémizagrovides two distinct types of
explanations: the first one is based on self-ozmion (e.g. [Axelrod and Cohen, 99];
[Kuwabara, 00]; [Lanzara and Morner, 03]); and #ezond one focuses on the role of
institutions (e.g. [Bonaccorsi and Rossi, 03]; [Me@n, 01]; [O'Mahony, 03]). We propose
to consider them as complementary: we will show the licences, which represent the only
type of institutions preceding the actors’ intei@tt play an important role in orienting
further self-organization and in determining theeegence of particular arrangements in

CBPP.

Our argumentation finds its root in the studiestba notion of coherence in the
economics of organizations (c.f. [Dosi and al.,;92ohendet & Llerena, 01]). The key idea
of these studies is that to create collectivelyapct goes far beyond the sharing of distinct
ideas, but necessitates complex processes of dudivand collective learning to ensure the
compatibility of emergent rules, norms and routifaghis view, “coherence... involves the
creation of commonly shared bodies of knowledge..iclvlare — at least partly — known to
all the members of the organization involved inieqg interaction” [Cohendet & Llerena,
01]. However, depending on the articulation betwer ante— ex postcoordination in a
system, coherence may have different attributesmfatibility between individual plans” in
ex-postcoordinated systemeersus‘compatibility of the collective behaviour withalsystem
objective” in ex-antecoordinated systems [Cayla, 06]. Consequentlyindtsorganizational
arrangements determine the enhancement of coherémoex-post coordinated systems
coherence increases with the emergence of comnshadied “abstract rules” [Hayek, 73]
(e.g. routines) which result in actors’ interacioi®©n the contrary, iex-antecoordinated
systems the degree of coherence depends on th# &xtehich the rules are clearly defined

by central authority and respected by other members

We will demonstrate that the organizational arramgets enabling coherent
development processes in Debian and Take the Bus tifferent architectures, and that
these architectural differences result, at leadtghy, from the articulation betweesx ante-

ex postcoordination introduced by the licences.

2.1. Authority structure.

Since in the CBPP the volunteers participate irectve production, the authority

structure can positively influence the venue of cewers only if they find it appropriate and

10

effective. We suppose that this is one of the neasehy there can’'t be any other form of
leadership than that based on collective recogndiad joint decision making. However both

projects represent different approaches to theamphtation of this norm.

As we have already mentioned, GPL substantiatesntnm of the leadership while
being a political initiative: the publication of@oject under the GPL implicitly introduces
the leadership based on collective recognitionjamd decision making. In this effect, in the
Debian project, the leader is yearly elected by degeloperS The instance of decision
making includes also so-called “admitted” or “offi¢ members — participants whose
contributions have been accepted for official disiion: the integration of individual
contributions to the Debian distribution is a coliee decision of the leader and the

maintainers. Official members with the project’ader form the core of the project.

By contrast, in Take the Bus the project’s leaddhe initiator of the project providing
the material (tempo and lyrics) to start. The nayfnthe leadership is introduced via the
collective choice of the licence’s terms: firstiyhile choosing among the licence’s terms,
contributors participate in decision making; thdre establishment of the non-modification

clause, signals the recognition of the leader’'smetencies by the contributors.

On the one hand, in both projects the leadershgsssimed on the basis of collective
recognition of the leader's competences and pravittee ground for the cooperation
development among the members: all the contribdtave agreed on the respect of this basic
norm. On the other hand, contrary to the Debianeptpin Take the Bus the leadership is

fixed explicitly “once and for all” by means of thieence: the leader who has the right to

" Collective leader elections in the Debian projeegn that “anybody who is already admitted to tiugegt is
not only eligible to vote in this election but ebie to nominate themselves for the leadershiptjprsi— says
the current leader of Debian, Branden Robinson §fuand Vicente, 05]

11

make the final decision cannot be changed alongdtheslopment process even if other
participants do not agree t8.iSo, authority in Debian is rather flexible andisigve to the

change in participants’ individual preferences abgectives, thus stimulating their eventual
compatibility through the ongoing negotiation. Atet same time in Take the Bus the
relatively rigid authority defines the final objeet of collaboration (creation of music
composition on the bases of particular tempo amtd) and coherence in this case is

ensured via the establishment of the exclusivetsigh the final components arrangement.

2.2. Labour division.

In the CBPP there are no explicit formal constsaifdr tasks accomplishment (like
deadlines, task assignment or other duties). Iniddelnd in the Take the Bus Project the
participation of contributors is based on so-callednergent” distribution of roles: as
opposed to being assigned to carry out a taskribatdrs choose any task depending on their

own needs, interests and competences.

In Debian the efficient completion of a task (foaenple, to make a package) consists
of software development, update and support aloitly the evolution of the main project
(because the software components of the operagstgra are technically interdependent). In
Take the Bus, artists propose some music composiiod, then, subsequently provide them
with support and evolutions, like video or texthius, in both cases in order to achieve
efficient functioning of the projects, the auth@sho realize the task from the beginning to

the end.

8 For example, while making the arrangement of doutions the leader in principle can distributeritthe
music platforms without an approval from other mensb

12

To mobilise voluntary joint distribution of roleséto support the projects’ evolution it
Is important to make the participants responsibletiie performance of their contributions.
The most obvious solution, which could enhance qreak responsibility of the project’s
member, is that developers identify themselves eaxth others according to the tasks they
have made. GPL puts in action this solution throtinghpaternity principlevhich implies that
all the contributions to Debian are not anonymdasiexample, each package must contain
the name and the email of its author. The CC ireTthak Bus acts in a very similar manner as
the GPL does: due to the attribution clause, altippants, the leader as well as the
contributors, are collectively responsible for theal music compositions which will be

diffused on different web platforms.

As a result, in both projects the “emergent” digition of roles coupled with the
principle of paternity has important consequenamstifie coherence of the development
process. In Debian it stimulates interactions amgragticipants: to provide better
performance of their contributions, the project®@mbers have to follow the evolution of the
project and, thus, to co-ordinate their contribogiowith the contributions of other
participants. In the Take the Bus Project the laitron clause encourages contributors not
only to propose their ideas, but to contributeh®e project’'s maintenance and support while

improving the project’s performance.

At the same time, there are some differences ioie of functioning between Debian
and Take the Bus. Despite the fact that contrilsutan choose any task to perform according
to their own preferences, in Debian there is aslustinction between the “core” and the
“periphery”. The periphery consists of non-admittadmbers who contribute to the project
by realizing some simpler tasks: for example, pateaking, debugging or translation.

Whereas any patrticipation is possible at the peryphthe integration of contributions of non-

13

admitted developers to Debian distribution is rathelong process. Firstly, in order to
become an official member, the newcomer (contmigutat the periphery) has to establish
contacts with the “core” developers and ask himthéisponsor” him/her. Then, the sponsor
checks the technical features of the package peopdsy the newcomer, submits the
newcomer to specific tests to be sure both if tsaomer is competent to enter the project,
and if his/her ideas correspond to the ideologyDebian. Finally, the sponsor expresses
his/her opinion concerning the possibility of imaigpn of the newcomer’s contributions to

the Debian distribution and his/her admittancerasfficial member [Auray and Vicente, 05].

In contrast, in Take the Bus the leader publiclgpvides the material which serves as
the common base for potential contributors, themdaycomers may choose between starting
to learn at the periphery or sending their contrdns directly to the leader and becoming at

once official members if their contributions aréeséed.

We think that the separation between the core &ed periphery as the specific
arrangement in Debian results from its orientattonthe ex postcoordination via the
negotiation process. On one hand, GPL introducesrya‘open’ authority structure based on
collective decision making all along the developimgrocess described above (contrary to
the CC licence). On the other hand, the developmiah operating system still necessitates
a certain co-ordination among the contributions thu high interdependencies between the
components. So, the most important problem whicluldcoentail discordance and
discontinuity is the problem of crowding: it is easto co-ordinate the contributions if the
fluctuation of participants and contributions ig mery intensive. Moreover, to resolve some
complex tasks it usually necessitates repeatediarable interactions of the key contributors
who are in closer association with each other, thihn other contributors. That's why there

is a certain barrier to entry to the core whichvesras an implicit coordination mechanism,

14

necessary to suppak postegotiations among developers, provides an additiprotection
of relative intensity and longevity of interpersbmelations in the core and has important
advantages for learning in context by means of ifiregte Peripheral Participatioh]Lave

and Wenger, 91].
2.3. Conflict resolution.

Connecting a large number of participants withed#ht skills and experiences within a
common project could result also in a large nunaberonflicts. In both projects the conflicts
are resolved mainly by means of negotiations amtbegcore participants. Some implicit
mechanisms are mobilised to support the negotigironess: for example, mailing lists and
Concurrent Versioning System in Debian; or forumslake the Bus (see [Egyedi and van
Wendel de Joode, 04] for a detailed discussiongrdlis however a difference between the
two projects in approaches to the situations wiendonsensus cannot be reached among

developers.

In contrast to the Take the Bus Project, in Debitavelopers have the right to leave the
project and to initiate their own project in pagalfthefork) [van Wendel de Joode, 04]. The
fork is “what occurs when two (or more) versions ofoétvgare package’s source code are
being developed in parallel with once shared a commode base, and these multiple
versions of the source code have irreconcilableerdinces between ther’To enable this
option, the GPL licence allows to modify the pragrand to redistribute it, and in such a way

this licence permits the “exit option” [Hirshmar§70] as an approach to conflict resolution.

% “Legitimate peripheral participation provides aywa speak about the relations between newcomersian
timers... A person’s intentions to learn are engaayadithe meaning of learning is configured through t
process of becoming a full participant in a soaitttgal practice.” [Lave and Wenger, 91]

19 http://jargon.watson-net.com/jargon.asp?w=forlst(kdsited on January 5th, 2007) [cited in: van \d&drde
Joode : 2004]

15

On the one hand, this option can negatively infb@ethe continuity of the project and
entail the value destruction [van Wendel de Jobdg,On the other hand, the exit option can
be viewed also as a very important additional cimattbn arrangement in Debian. Due to the
high interdependence among the project’s componsaspense in one of the parts can entail
important negative consequences for the developwfetite whole project. GPL introduces
ex postnegotiations as the key coordination mechanismgatbe project’s development. So,
when some important discrepancies take place arehwle negotiation processes do not
manage to solve the conflict, the option to exitnpes to reduce the number of conflicts and
to go on with the work in progress There might be even some advantages at the déved
project?, and at the level of the variety of the produnt©iSS. The exit option can only have
important negative consequences for the initiajgmtodevelopment, if the new project does
not belong to the OSS (if the development procesdosed): in this case the collective work
of many developers will be appropriated by onesgwreral) participants who decided to leave
the initial project. To protect the rights of cahtitors and to permit the exit option, the
copyleft principle in GPL guaranties that any fankiated on the bases of the Debian project

will also be open.

On the contrary, in Take the Bus via the collectitieice of the CC licence’s terms all
the memberex antecede the right of the final word in conflict siticams to the project’s

leader. Even in the case of serious conflicts witlie project, the Take the Bus Project’'s

2 One of the Debian former leaders said: “It is esakthat you can decide to leave if you do noeagiThere is

a rule, that you should not do it if you do notthithat it is strictly necessary. But sometimeis ihecessary!”
[Cited in: van Wendel de Joode, 04].

!2 There may be an opportunity to improve the quaditythe product by integrating some relevant sohsi
created in the framework of the fork. For instartbe, Python project is a good example where inQB&S the
exit option positively influences the continuitycaadvancement of the project. One of the active baemof
Python, Armin Rigo, had an idea on how to make Rython programming language faster, but his idea
contradicted with some common viewpoints from othembers. In order to bypass the resistance, he has
decided to leave the project, to initiate his ownd &0 specify his ideas in the framework of thisvrgroject,
Psycho. In such a way, he proved the appropriasenésis solution. Finally, the Phyton’s projectdier
recognized that this solution should be includeth@initial project.

16

members can use only the “voice option”: a contobor a group of contributors do not have
the right to initiate in parallel their own projemt the basis of music compositions developed
in the framework of Take the Bus. Thus, the dewalept of this project is only possible in its
initial form. This approach permits to keep theegrity and continuity of the project, but the

excessive use of the voice option might lead to cemflicts [Hirshman, 1970].

3. Licence choice and product architecture.

In previous section we have described the orgaomzatarrangements in Debian and in
Take the Bus Project. We have shown that the @iffegs in the projects’ organization are
conditioned, at least partially, by the licenceslemwhich the projects are published. This
section raises the question about the choice imkeade for a particular content: Why the CC
licence which introduces the elementsesfantecoordination is applied for the collective
music creation and not for the software developMé@nivice versavhy the GPL introducing
ex-postcoordinated system is mainly used for the coNectioftware development and all the
existent music projects are published under the ®&7argue that one of such factors rely in
the nature of the product: since music and softywaneucts are very different by nature, the

development of these products can imply differemrdination requirements.

3.1. Software and music products’ architectures.

The literature on the product’s architecture (BJdyich and Eppinger, 00]; [Ulrich, 95])
states that the manufacturer has “substantialutiitin choosing a product architecture”
[Ulrich, 95]: in other words, the producer can adalifferent schemes of allocation of
product’s functions to physical components from ptately modular to integral solutions. In
accordance with the existent typology [Ibid.] tleldwing “ideal” types of mapping between

functional elements and physical components canistnguished: “one-to-one mapping”

17

where one function is allocated to one componangry-to-one” where many functions are
allocated to one component; and “one-to-many” wigere function is performed by many
components. “A modular architecture includes a tmene mapping from functional
elements in the function structure to the physicahponents of the product, and specifies de-
coupled interfaces between components. An integrethitecture includes a complex (non
one-to-one) mapping from functional elements to sitel components and/or coupled

interfaces between components.” [Ibid.]

However one can suppose that some products acgriori have very different
structures. For example, software and music costard very different by nature. Software
represents an example of the product, the rolehidéiwis to enable the subsequent creation of
value. Music is usually in itself the “final prodiicdestined for the satisfaction of the users’
tastes. From this viewpoint, the component-functisapping is naturally different in these
two examples. The structure of operating systemotsmodular in the strict sense, because
the interface (Application Programming Interfacd?lAcannot be completely decoupled and
a change in one component often induces some changgher components. However, its
structure is closer to the case of one-to-one nmgppach software application represents a
particular function in the operating system. By tcast, in the case of music composition the
interface (tempo and lyrics) can be easily decalpleut the independently created
components do not constitute the single whole ifatheé case of operating system). Music
composition is closer to the case of one-to-mangpimay: the aesthetic function of the music
composition is enabled by the componentd by the final arrangement of these components.
So, one can say that the music content is inhgrantire integrated than the operating

system: changes in one of the components and/orameamgement directly influence the

18

major aesthetical function of music composition gne birth to a new product (evidently it

Is not the case for an operating system).

3.2. Products’ architectures and coordination raguanents.

The product’s architecture relates to the produgggormance [Ulrich, 95; Clark and
Fujimoto, 91] or “how well the product implements functional elements” [Ulrich, 95]. In
particular, in the case of more integrated prodtistesperformance targets can be achieved
only via the optimisation of “global performance achcteristics” (in contrast to the
optimisation of “local performance characteristicsi’ more modular products) [lbid.].
Consequently, different products’ architectures mexyuire specific coordination approaches

along the products’ development.

As it was presented in the previous section inGB&P authority is based on collective
recognition, there are no formal constraints faktaccomplishment, and membership is
relatively open. However, the adoption of this madgroduction for the development of a
product which is inherently integrated may imposems supplementary coordination

requirements.

In this effect, the case of collective music creatiwhich is inherently more integrated,
raises some supplementary problems. In partictharsystem-level design (development of
the product architecture) requires the definitidrad'system assembler” in addition to the
development of communication interface: in thegnéed products “whether the components
meet their performance targets depends on theraation and not on whether they meet
some pre-specified criteria” [Ulrich, 95]. Thus, test the product’'s performance, it is
necessary to assemble the components and consateras a whole. Presented in this way,

the fact that the collective music creation induttes development of the common interface

19

and theex-anteallocation of the decision right on the componatangement seems to be

an obvious coordination solution.

In the case of operating system, which is inheyemtbre modular, the focus of the
system-level design is to define an appropriate pmrent interface, specifying
communication protocols between the componentsesmmduraging innovation: in view of
high interdependencies between the components acertainty about the evolution of the
product’s structure, thex antespecification of the common interface can limit gearch
space at the level of individual contributions amghede the whole dynamics of innovation
[Zabel and Zeitlin, 04]. In the OSS the problemimterface specification is solved in a
specific way: no interface specification is defin@sl a common base, but it emerges and
evolves along with the evolution of the project aodnes as a result of a negotiation process
among participants. Contributors either chooseeate independently any solution they want
while respecting the common API; or, if a new sioluitcalls for the interface redesign, they
submit this question to other participants. Thipen and emergent” interface allows at the
same time the unlimited search space at the comp®revel and certain coherence of

production process by means of structuring theegshaorm of API.

To summarize, we would like to underlie two inteires points:

Firstly, the CBPP allows important advantages foe tontent development. For
example, the absence of formal constraints andoatithbased on collective recognition
influence the conditions of wotkand as a result the participants’ efforts anddgiality of

the product [Mayo, 49; Akerlof, 82]. Open membepsim the CBPP is an effective solution

31n CBPP the leader does not decide the tasksctingalish or the deadlines. Consequently, the conten
development corresponds with ttreationrather thamproductionprocess, where the creation is not alien to the
creator and where the participants can realize $kéras through their work.

20

because it permits to cope with the “identifyinglassigning of human capital” [Benckler,

02] and to take advantages from distributed knogsded

Secondly, in these conditions the choice of a teeseems to be non-random. Since the
range of application of CBPP includes the prodwdtsch have different inherent internal
structures, the adoption of the CBPP for their tgwaent might demand different
coordination requirements. We have seen that indbeand Take the Bus Project, licences
explain, at least partially, the emergence of tteggets-specific organizational arrangements.
Now we can say that these arrangements play therteng role in enabling modular
architecture for the development of products witfiecent types of coupling among the

components.

Conclusion.

We have analysed two examples where the CBPP isedppr software and music
collective creation: The Debian and the Take the Brojects which can be considered as
representative of their respective domains. Oulyaisis just the first step towards the study
of the CBPP functioning and a far more elaboratealys is necessary to describe the

organizational forms mobilised in the CBPP.

However, the comparative study of Debian and TakeBus permits us to reach some

general assumptions about the CBPP.

First of all, we can say that authority, as weltlas “emergent” distribution of roles and
the resolution of conflicts by negotiation playierportant role for the dynamic and coherent

development of the projects in the CBPP.

21

Secondly, despite the fact that there are commaatuifes in organizational
arrangements of the projects; rather than talkinguethe CBPP organization, the scope of
production specific architectures should be studieden the processes of software
development could differ depending on the congoedeluct, all the more are the divergences

between different domains of CBPP (like betwedtwsoe and music).

Finally, we suppose that the role of the free lammncan be much larger than it is
usually presented in the literature: free licenaesonly allow knowledge sharing, but they
can also serve as coordination mechanisms stimglatidividual and collective learning
through the introduction of organizational arrangein effective for the concrete

developments process.

The future work should be based on the compari$@nlarger number of projects from
different domains. This will permit to provide arsoof typology of organizational
arrangements of the CBPP and, in such a way, tlaiexihe efficiencies and failures of this

mode of production for the development of varioostents.

22

REFERENCES

Akerlof, G.A., 1982. Labor Contracts as Partialt&@kchangeQuarterly Journal of Economigs

97, 543-5609.

Auray, N., M. Vicente, 2005. Empirical study on t@gen Source Software realized in July 2005

by Nicolas Auray and Michael Vicente. ENST, Paris.

Axelrod, R. and M.D. Cohen, 1999. Harnessing Corite Organizational Implications of a

Scientific Frontier. New York: Free Press

Benkler, Y., 2002. Coase’s Penguin, or, Linux ahe Nature of the Firm. Yale Law Journal, 112,

pp. 369-446.

Bonaccorsi, A. and C. Rossi, 2003. Why Open So8afevare can succeed. Research Policy 32(7),

pp. 243-58

Cayla, D., 2006. Ex Post and Ex Ante Coordinatidnnciples of Coherence in Organizations and

Markets. Journal of Economic Issues, Vol. 40, M{2,325-32.

Clark, K., and T. Fujimoto, 1991. Product Developteerformance. Boston, MA: Harvard Business

School Press.

Daft, R., K. Weick, 1984. Toward a model of orgatians as interpretation systems. Academy of

Management Review 9(2), pp. 284-295.

Dosi G., M. Hobday and L. Marengo, 2000. Problerh4a8g Behaviours, Organisational Forms and

the Complexity of Tasks. LEM working paper, StnarSchool of Advanced Studies, Pisa.

23

Dosi, G., D. J. Teece and S.G. Winter, 1992. Towattte theory of corporate coherence:
Preliminary remarks. in: Dosi, G., Gianetti, R.,nieelli, P.A. (Eds), Technology and

Enterprise in a Historical Perspective. Oxford Wmsity Press. Oxford.

Egyedi, T. M., R. van Wendel de Joode, 2004. Stalimiion and Other Coordination Mechanisms
in Open Source Software. International JournalToStandards and Standardization Research,

Vol. 2, No. 2, pp.1-17, 2004.

Hayek, F.A., 1973. Law, Legislation, and LibertyolV1: Rules and Order. Chicago: The University

of Chicago Press.

Hirschman, A. O., 1970. Exit, Voice, and Loyaltgsponses to decline in firms, organizations,

and states. Cambridge, Massachusetts and LondovatdaJniversity Press.

Johnson, B., 1992. Institutional learning. in: Lual, B.-A. (Ed.), National Systems of
Innovation: Towards a Theory of Innovation and Hattive Learning. Pinter, London, pp.

23-44.

Jullien, N., J.-B. Zimmermann, 2006. New approachkesintellectual Property: from Open
Software to Knowledge-based Industrial Activiti€®@ME Working Papers on Intellectual

Property Rights, N°5.

Kuwabara, K., 2000. Linux: A Bazaar at the Edg€hb#os. First Monday. Peer reviewed journal on

the Internet, 5.

Lanzara, G.F. and M. Morner, 2003. The Knowledgeld&yy of Open-Source Software Projects.

Presented at 19th EGOS Colloquium, Copenhagen.

24

Lave, J., E. Wenger, 1991. Situated Learning: Legite Peripheral Participation. Cambridge

University Press. Cambridge.

Lee, G.K., R.E. Cole, 2003. From a Firm-Based t@ammunity-Based Model of Knowledge
Creation: The Case of the Linux Kernel Developm&niganization Science, Vol. 14, pp.

633-649.

Marengo, L., G. Dosi, P. Legrenzi and C. PasgB800. The structure of problem-solving knowledge

and the structure of organizations. Industrial @odpoorate Change, Vol. 9 N° 4: 757-788.

Mayo, E., 1949. The Social Problems of an Industi&ilization. Routledge and Kegan Paul,

London.

McGowan, D., 2001. Legal Implications of Open-Seufoftware. University of lllinois Review

241(1), pp. 241-304.

Moon, J.Y., L. Sproull, 2002. Essence of Distriltld/ork: The Case of the Linux Kernel. in:

Hinds, P., Kiesler, S. (Eds.). Distributed Workn@aidge, MA: MIT Press, pp. 381-404.

Nelson, R. and S. Winter, 1982. An Evolutionary dityeof Economic Change, Harvard University

Press, Cambridge, MA.

Nooteboom, B., 2004. Inter-firm Collaboration, Leiaig and Networks. An integrating approach.

Routledge, London and New York.

O'Mahony, S.C, 2003. Guarding the Commons: How Canity Managed Software Projects

Protect Their Work. Research Policy 32(7), pp. 1289

25

Sabel, C. F. and J. Zeitlin, 2004. Neither modtylaror relational contracting: inter-firm collabticm

in the new economy. Enterprise and Society, 5¢2):368-403.

Ulrich, K., 1995. The role of product architectumehe manufacturing firm. Research Policy, Vol, 24

N°3, pp. 419-440(22).

Ulrich, K.T. and S.D. Eppinger, 2000. Product Dasand Development (2nd ed.). New York:

McGraw-Hill.

Van Wendel de Joode, R., 2004. Explaining the orgéion of open source communities with the
CPR framework. The 10th Conference of the Inteonali Association for the Study of
Common Property: "The Commons in an Age of Globansition: Challenges, Risks and

Opportunities”, Oaxaca, Mexico, August 9-13.

Van Wendel de Joode, R., 2005. Understanding opemces communities. An organizational

perspective. Ph.d thesis, Delft University of Temlbgy, the Netherlands

West, J., S. Gallagher, 2006. Patterns of Openvatiamn in Open Source Software. Submitted for
Chesbrough, H., W. Vanhaverbeke and J. West, &lpen Innovation: Researching a New

Paradigm”, chapter 5, pp. 82-106, Oxford UniverBitgss, Oxford.

26

